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[1] The multi-dimensional transition probability model
represents hydrofacies architecture in modeling aquifer
heterogeneity. The structure of the aquifer architecture is
mathematically characterized by a canonical representation
of the transition probability matrix, solved by an eigenvalue
decomposition method. Whereas the eigenvalue
decomposition has been numerically solved previously, we
show here that it can be analytically solved under the
assumptions that cross-transition probabilities are dictated
by facies proportions and that the juxtapositional tendencies
of the facies are symmetric. Although limited by the
assumptions, analytical solutions provide more immediate
insights about the relationships between transition
probability and facies proportion and mean length. The
analytical solution is first tested by comparison with the
numerical solutions and then used to represent hydrofacies
architecture within expressions for the spatial covariance of
conductivity and the macrodispersivity. The relationship
between the longitudinal macrodispersivity and integral
scale, the indicator correlation length, and the facies
proportion is represented in an equation for estimating the
field-scale dispersivity. An example is used to show how
sedimentary structures, conductivity contrasts, and facies
mean lengths affect the scales of the macrodispersivity.
Citation: Dai, Z., A. Wolfsberg, Z. Lu, and R. Ritzi Jr. (2007),
Representing aquifer architecture in macrodispersivity models
with an analytical solution of the transition probability matrix,
Geophys. Res. Lett., 34, 120406, doi:10.1029/2007GL031608.

1. Introduction

[2] Markov chains have been applied in geostatistical
models for simulating the spatial distribution of geologic
units using categorical indicator variables for a few decades
[e.g., Agterberg, 1974; Rolke, 1991; Politis, 1994; Carle
and Fogg, 1997; Ritzi et al., 2004]. In the Markov chain
model, both conceptual facies model and quantitative infor-
mation (proportions, lengths, juxtapositioning frequency)
can be combined to mathematically represent facies archi-
tecture [Ritzi, 2000; Zhang, 2002; Rubin, 2003; Ritzi et al.,
2004; Dai et al., 2004a, 2005]. The structure of the aquifer
architecture is mathematically characterized by a canonical
representation of the transition-probability matrix, solved by
an eigenvalue decomposition method, which previously has
been solved numerically [e.g., Carle and Fogg, 1997]. The
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analytical decomposition described here allows us to create
a mathematical framework in which the Markov chain
model representation of geologic architecture is incorporat-
ed into the Lagrangian-based, analytical expressions for the
macrodispersion of inert solutes. Deriving the macrodisper-
sion equations or upscaling other flow and solute transport
parameters in closed form requires exact solutions or
analytical functions to express the transition probability
model [Rubin, 1995; Ritzi et al., 2004]. Although some-
times limited by various assumptions, analytical models
generally provide more immediate insights about the rela-
tionships between state variables and model parameters. Lu
and Zhang [2002] derived an analytical solution of transi-
tion probability from a Markov chain model for bimodal
sediments. For multimodal distributions, Ritzi and Allen-
King [2007] and Dai et al. [2004b, 2007] gave empirical
relationships between transition probability functions and
the proportions and geometric attributes of facies.

[3] In this article, we first develop an analytical repre-
sentation for hydrofacies architecture through a solution for
the eigenvalue decomposition of the transition rate matrix
and the development of the spectral component matrices
(using Sylvester’s theorem [Agterberg, 1974]). To show that
the assumptions we are required to make are robust, we
compare the analytical solution with both the numerical
results and the sample transition probabilities taken from a
field case. Second, the Markov chain model is used to
represent hydrofacies architecture in a spatial covariance
model, which is incorporated into an analytical expression
for the pre-asymptotic macrodispersion of inert solutes
based on the Lagrangian approach [Dagan, 1989; Gelhar,
1993]. Through this development, using the analytical
formulation, we can directly link the spreading of inert
solutes to the Markov chain model and the aquifer archi-
tecture. This provides an efficient framework for evaluation
how indicator correlation lengths, conductivity integral
scales, and facies proportions and mean lengths all contrib-
ute to plume spreading.

2. Analytical Solution of Facies Transition
Probability
2.1. Continuous-Lag Multidimensional Markov Chain
Model

[4] Consider a domain consisting of N facies in mutually
exclusive occurrences. The transition probability (%),
which represents the volumetric proportions, geometry and
juxtapositional tendencies of the facies, is given by Ross
[1988],

ti(hy) = Pr{li(x) = 1 and L(x) = 1}/Pr{l(x) = 1},
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where h, is the lag distance between two points x and x’ in
direction ¢ and [(x) is the indicator spatial function for
facies k. In a three-dimensional transition probability model,
the spatial variability of facies distributions in direction ¢
can be characterized by a one-dimensional Markov chain
model [Agterberg, 1974; Politis, 1994; Carle and Fogg,
1997; Lu and Zhang, 2002]. The continuous-lag transition
probability matrix T in direction ¢ is written as:

(o) = (1 (1)) = € (1)

where R = (7;;)nxn 1s an N X N transition rate matrix whose
entries ry; denote conditional rates of change per unit length
from category k to category i in the direction ¢.

[5] If R is known, the transition probability matrix T can
be evaluated by eigenvalue analyses. Let 7, j = 1,N be
distinct eigenvalues of the transition rate matrix R, and Z,
j=1,N be their corresponding spectral component matrices,
which are computed by

ZI* nml_ /H 77m_ j > (2)
m#j

where I is the N x N identity matrix. Note that if n,, ~ 7,
equation (2) would have numerical problems because the
denominator is close to zero. The transition probability
matrix can be expressed as [Agterberg, 1974]

N
hy) = ™z, (3)
j=1

[6] Whereas the eigenvalues and spectral component
matrices in equation (2) were solved numerically by Carle
and Fogg [1997], we develop here a closed-form analytical
solution to the eigenvalues and spectral component matrices
for expressing the relationship between the Markov chain
model and plume spreading. Furthermore, we have found
that in some cases an analytical solution will be helpful to
avoid the numerical difficulties that can occur when
eigenvalues in equation (2) are similar.

2.2. Analytical Solution of Facies Transition
Probability

[7] In order to obtain an analytical formulation of the
transition probability, we first assume that cross-transition
(across facies) probabilities depend on facies volumetric
proportions (pz, K = 1,N) only, in which case the off-
diagonal transition probabilities #,(h,) are [Carle and Fogg,
1997]:

ti(hs) = for i# k. 4)

1 )] 2

In making this assumption, we cannot strictly represent
some geologic scenarios, like fining upwards sequences.
Differentiating equation (4) with respect to h, at h, = 0, the
off-diagonal transition rates can be computed from diagonal
transition rates as

i 4k, (5)
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and the rate matrix R becomes,
—rp2 —TI'11PN
T
(1=p1) (1—=p1)
—72p1 —T22PN
2
R=| (1-p) (1=p2) (6)
*VA}Npl —FNND2 o
(I=pv) (1-pn)

Secondly, we assume that the juxtapositional tendencies
between categories & and i are symmetric in the direction ¢.
The assumption of symmetry does not necessarily require
that the geometric distribution of categories k and i are
symmetric, but only requires that #;(h.4) = ti(h_,) [Carle
and Fogg, 1997], so that the cross-transition probabilities at
the symmetric positions, such as #; and ¢#;, satisfy

pitii(hs) = piti (hy), and ri = ry pi/pr, for i#k. (7)

Substituting 7y, in equation (7) into equation (5), we have

—TkpPi _ Pi TPk e T

M=) e (=p) T U=p) (U=-p)

ik
(8)

By using equation (8), we can rewrite the transition rate
matrix as

p1—1 P2 y2%
T Pi p—1 ... pn ©)
- (1-p1) o :
14 D2 py —1

. —r 1 .
Letting 1711 = —, we compute the eigenvalues of R by
. — P Y
using det|R — 7I| = 0 or
p—1=X\n P2 PN
P1 pzflfA]T] PN
, : . . =0. (10)
pi D2 py—1—=2Am

By applying properties of determinants for row and column
N

operations and E p; = 1, equation (10) simplifies to

i=1

“xp 0 ... 0
0 A=A ... 0

) R e N ¢ 0))
D1 P2 =Am

From equatlon (11) we have the final equation, n(1 +
Am)Y ™" =0, and the matrix R has eigenvalues 7; = 0, and
(N — 1) repeated eigenvalues 7, = —1/);. Then, we compute
spectral component matrices with equation (2) as Z; = (py,

P2 - PN1IxNs Lo = (6 — pdnxns Where &y is the
Kronecker delta. Substituting into (3) with the computed
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Table 1. Sediment Lithofacies and Their Statistics in the Vertical
Direction

Mean _
Lithofacies &k  Proportion  Thickness, m Az = Lig(l — pp), m
Debris flow 1 0.07 1.32 1.23
Floodplain 2 0.56 2.52 1.11
Levee 3 0.19 1.53 1.24
Channel 4 0.18 1.52 1.25

eigenvalues and spectral component matrices, we obtain the
analytical solution of the transition probability as

ti(hs) = pi+ (O — pi)e ™ (12)

where )\, is the indicator correlation length. For k = i, the
auto-transition probability is

(k, i=T, ),

hg
tic(ho) = pi + (1 —pr)e . (13)

The mean length L, , of a facies k along lines in the
direction ¢ can be computed as [Carle and Fogg, 1997]

Oty (hy) 1
Ohy B

(14)
hy—0+

Therefore, \; = Z,m(l — pp). This result indicates that a
uniform indicator correlation length exists when the
sedimentary facies distributions satisfy the above two
assumptions.

2.3. An Application to a Field Example

[8] Here the analytical solution is tested with a field
example for which a numerically-developed Markov chain
model has been published [Carle and Fogg, 1997].The
purpose of comparing the analytical solution to the
numerical solution is to illustrate differences in the Markov
chain model that may result from our assumptions. The field
site is located at Lawrence Livermore National Laboratory
(LLNL) near the Southeast end of the Livermore Valley.
The Livermore Valley is relatively flat, underlain by a
complex alluvial sedimentary basin drained by two
intermittent streams. LLNL drilled over 350 boreholes for
characterizing the subsurface sedimentary structures. The
subsurface unconsolidated alluvial sediments were categor-
ized with the data interpreted from cores, textural descrip-
tions, and geophysical logs. Table 1 lists the proportions and
thicknesses for each of the four hydrofacies.

[v] Using equation (14), we compute the indicator cor-
relation lengths for each facies and also list them in Table 1.
Note that the mean lengths of the facies are measured
vertically down boreholes and are slightly larger than those
measured perpendicularly to the dips of the facies. The
correlation lengths computed for each facies are not exactly
the same because the assumption of symmetry is not strictly
met by the data analysis. Yet, they are similar and to
develop the Markov chain model, we take the volume
average:

(15)

Zpk/\lko ZpkLko 1 —pi),

k=1
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which gives A\; = 1.2 m. With this indicator correlation
length and the volumetric proportion data, we compute
analytically the Markov chain model in the vertical direction
using equation (12) and for the purpose of comparison, we
plot it together with the sample transition probability and
the numerical results of Carle and Fogg [1997] in Figure 1.
In most cases, the asymptotic exponential function of the
analytical transition probability model is a good representa-
tion of the auto- and cross-transition probabilities. The
biggest difference is in the case of transition from channel
facies to levee facies. The shape of the sample transition
probability from channel to levee is not simply exponential
as in random associations. Furthermore, the transition
probability for levee to channel is not symmetric. Levee
facies usually occur adjacent to and above channel facies,
rather than in random association with the facies. The
analytical solution cannot represent this association for
these two facies. The generally favorable comparison builds
confidence that the analytical solution for the transition
probability model has significant applicability, despite the
underlying assumptions. Given the well-defined closed-
formed expression of equation (12), we can use it to
evaluate models of conductivity covariance, and macro-
dispersion.

3. Conductivity Covariance Function
Incorporating the Markov Chain Model

[10] Let Y(x) be the spatial random function of log-
conductivity, which can be divided into subpopulations
according to facies as per Rubin [1995],

(16)

where Y;(x) represents log-conductivity within facies &
According to Ritzi et al. [2004], the composite covariance
Cy(hg) of Y(x) can be represented in terms of proportion,
transition probability, and the in-unit or cross-unit covar-
iance of Y(x) as

N N
= Z Z {C]a h¢> + mkmt}pktkl( ) A4}2‘

k=1 i=1

(17)

where m; and o7 denote the mean and variance of Y, W), My
is the composite mean of Y(x).

[11] By assuming that the cross-covariances are negligi-
ble, i.e., Cy(hs) = 0 for k # i, and applying the analytical
solution in equation (12) for transition probability and
exponential functions for auto-covariance Cp(hy) [see
Rubin, 1995; Dai et al., 2004a], we obtain the composite
covariance function as

£ N h(J
Zpkake i +2Pk(1 —pr)oe

N N
+§ZZ mk—ml pkp,

k=1 i=1

ho

—_

(18)
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Figure 1. Comparison of sample transition probability with analytical and numerical solutions.

where A\, = N A/(A\e + ) and ) is the integral scale of log
conductivity in facies .

4. Macrodispersivity Model

[12] To derive the macrodispersivity equations, we use
the same assumptions as Rubin [1995]: (1) the flow field is
at steady state, (2) the conductivity field is weakly
stationary, (3) the velocity field is uniform in the mean,
(4) the flow domain is unbounded, and (5) the variance of
the log conductivity is smaller than unity. Furthermore,
assuming that the mean displacement velocity of a solute
particle is approximated at the first order by the average
fluid velocity, the macrodispersion coefficients are com-
puted by:

Dy(t) = /Ol wy (Ui ')l (19)

where D7) is the macroscopic dispersivity tensor, u; is the
velocity covariance, and U is the mean velocity. Following
Rubin [1995] and replacing the bimodal covariance function
with the multimodal covariance of equation (18), we
derived the longitudinal and transverse macrodispersion
coefficients in the three-dimensional domain as

Di(t) _ <\~ >
Ul = zakpk (pk)\kA(Tl) + (1 *pk))\wA(Tz)
k=1

N
+%‘12A(T3) Zpi(mk - mi)z)v (20)
i P
N
DZU) =Y o (Pk)\kB(Tl) + (1= pi) Ay B(72)
1 k=1
+2/\T'112{B(7'3) Z;Pi(mk —m;) )7 @1)
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Figure 2. Sensitivity of the longitudinal and transverse macrodispersion coefficients to conductivity contrast (p = K nax/

K,in) in the three-dimensional domain (7 = U,#/))).

4
where, A7) =1+ — [6(e" —7; — 1) — 7 (" +2)], 7,
et
is the dimensionless time expressed as 7, = tU;/\,, 7o =
tUl/)‘l//r T3 = tUl/)\], and B(Ti) =
1
o [12(1+7—e") + 17 (5+e" +1)].

1

[13] Equations (20) and (21) relate the macrodispersion
coefficients to the facies statistical parameters such as the
facies proportion and correlation length, and the variance
and mean of log conductivity. The macrodispersion coef-
ficients are positively correlated with the mean difference
(or the contrast) of log conductivity. Figure 2 shows the
macrodispersion coefficients increase with the increasing
conductivity contrast, which is defined as p = K a/Kmins
where K.« and K, are the maximum and minimum
geometric means of conductivity within the N facies
(K;=e",i=1,N). When p = 1, the third term (also
called the cross-facies-transition term) in (20) and (21) is
zero and the macrodispersion coefficients only consist of the
first two terms (also called the auto-transition terms or
within-facies-transition). When p increases, the contribution
of the cross-transition term to the macrodispersion in-
creases. When p > 10, the cross-transition term dominates
over the auto-transition terms. The results in Figure 2
indicate that the variation of conductivity within and across
facies is the source of the macrodispersion and in a
homogeneous aquifer system the macrodispersion coeffi-
cients are zero.

[14] When time is sufficiently large, the transverse mac-
rodispersivity approaches zero, while the longitudinal mac-
rodispersivity has the following simplified expression,

D &, N 2
- ok | P+ (1 —pk))\,,,+2—2 Ep,-(mk—m,-) .
L= O =1

(22)

Table 2. Mean, Variance, and Correlation Length of Synthetic
Data of Log-Conductivity for the Lithofacies®

Lithofacies k my ol M
Debris flow 1 —0.84 0.2 0.9
Floodplain 2 —-3.14 0.5 1.0
Levee 3 —1.76 0.3 1.2
Channel 4 1.46 0.55 1

*Log-Conductivity, m/d.

Equation (22) shows how different modes of variability in
log conductivity contribute to the macrodispersion at the
later time. For a unimodal distribution of facies, N = 1,
equation (22) becomes D;,/U, = 02/\, which is the same as
the unimodal macrodispersivity derived by Dagan [1989]
and Gelhar [1993]. Equation (22) provides a way to
estimate the longitudinal macrodispersivity of a multimodal
conductivity field from the facies proportions, mean and
variance of log conductivity in each facies, and the indicator
correlation length.

[15] In order to analyze the impact of facies mean lengths
on macrodispersion with equation (22), we create a set of
synthetic data of log conductivity (Table 2), and use them to
estimate the longitudinal macrodispersion coefficients with
variable mean length of the floodplain. When we vary the
mean length of floodplain from 1 to 30 m and fix other
parameters, we find a linear relationship among the mean
length of the floodplain, the indicator correlation length, and
the macrodispersivity (see Figure 3), which means the
macrodispersivity increases with the increasing mean
lengths of the facies.

5. Conclusions

[16] The analytical eigenvalue decomposition in formu-
lating a Markov chain model for aquifer architecture allows
us to derive the associated macrodispersion coefficients for
solute transport in a three-dimensional domain. This, in
turn, facilitates analyzing the link between aquifer architec-
ture and plume spreading. We can easily and independently

80 T T T T T
=== |ndicator correlation length
= e \acrodispersivity
) 60
=}
2
= 404
[
©
aQ
]
B
o 204
(&)
o]
=
0 T T T

0o 5 10 15 20 25 30
Mean length of Floodplain (m)

Figure 3. Facies mean length vs. indicator correlation
length and macrodispersivity.
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analyze the relative contributions of facies proportions,
mean lengths, in-facies variance and per-facies covariance
in log-conductivity, and the difference in mean log-conduc-
tivity across facies. At late time, the longitudinal dispersiv-
ity coefficient clearly shows a linear dependence on the
variance of log conductivity, the mean length of facies and
the indicator correlation length.
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